US009189367B2

a2 United States Patent

Matthiesen et al.

US 9,189,367 B2
Nov. 17, 2015

(10) Patent No.:
(45) Date of Patent:

(54) METHODS AND SYSTEMS FOR DEBUGGING
BYTECODE IN AN ON-DEMAND SERVICE
ENVIRONMENT

(75) Inventors: Taggart C Matthiesen, San Francisco,

CA (US); Richard Unger, Seattle, WA
(US); Peter S. Wisnovsky, Oakland, CA

(US)
(73) Assignee: salesforce.com, inc., San Francisco, CA
(US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 520 days.
(21) Appl. No.: 12/883,066
(22) Filed: Sep. 15, 2010
(65) Prior Publication Data
US 2011/0258612 Al Oct. 20, 2011
Related U.S. Application Data
(60) Provisional application No. 61/325,955, filed on Apr.
20, 2010.
(51) Imt.ClL
GO6F 9/44 (2006.01)
GO6F 1136 (2006.01)
(52) US.CL
CPC GO6F 11/3664 (2013.01); GO6F 11/3636
(2013.01)
(58) Field of Classification Search

CPC ..ot GOG6F 11/3664; GOGF 11/3636
USPC 717/128
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5442771 A * 8/1995 Fileppetal.c.c.c.... 709/219
5,577,188 A 11/1996 Zhu
5,608,872 A 3/1997 Schwartz et al.
5,649,104 A 7/1997 Carleton et al.
5,715,450 A 2/1998 Ambrose et al.
5,761,419 A 6/1998 Schwartz et al.
5,796,633 A * 8/1998 Burgessetal. ... 702/187
5,819,038 A 10/1998 Carleton et al.
5,821,937 A 10/1998 Tonelli et al.
5,831,610 A 11/1998 Tonelli et al.
5,873,096 A 2/1999 Limet al.
5,918,159 A 6/1999 Fomukong et al.
5,940,827 A * 8/1999 Hapneretal. ... 707/703
5,963,953 A 10/1999 Cram et al.
6,092,083 A 7/2000 Brodersen et al.
6,169,534 Bl 1/2001 Raffel et al.
6,178,425 Bl 1/2001 Brodersen et al.
6,189,011 Bl 2/2001 Limet al.
6,216,135 Bl 4/2001 Brodersen et al.
6,233,617 Bl 5/2001 Rothwein et al.
(Continued)

Primary Examiner — Li B Zhen
Assistant Examiner — Sen Chen

(74) Attorney, Agent, or Firm — Blakely, Sokoloff, Taylor &
Zafman

(57) ABSTRACT

Described herein are means for debugging byte code in an
on-demand service environment system including a system
for simulating execution debug in a multi-tenant database
environment. Such means may include: receiving a request at
a web-server of the system, determining one or more trace
preferences are active for the request, sending the request to a
logging framework communicatively interfaced to the multi-
tenant database implementation, processing the request via
the logging framework, and capturing at least a portion of the
execution data emitted responsive to execution of the plural-
ity of events for use in simulating execution debug of the
events. Other related embodiments are additionally
described.

20 Claims, 7 Drawing Sheets

A\/SOO

‘ Receiving a request at a web-sarver of a system. 805 ‘

Capturing at feast a portion of the execution data emitted
ive 1o execution of the plurality of events based on

Determining, via a trace flag analyzer, one or more trace
preferences are active for the request. 10

Performing a look-up operation via the web-server of the one
or more trace flags for the request received based on a user
identifier (UseriD} or a client organization identifier (OrgiD}

i 615

the olne or more trace preferences determined to be active for
the request. 840

Flushing the captured portion of the execution data from a
hardware memory of the system to a persistent datastore

with the request.

separate and distinct from the hardware memory. 845

Encoding the cne or more trace flags into the request based
on the lookup operation.

Forwarding the request having the one or more trace flags
encoded therein. 825

Receiving a request to simulate execution debug
of the plurality of events processad via the
logging framework. 5

=3

Accessing the portion of the execution data
emitted responsive to the execution of the

Sending the request to a logging
icatively o a multienant

datebase i 630

plurafity of events.

ing execution of the plurality of events via a graphical

Pracessing the request via the logging framework, wherein
the logging framework emits execution data describing the

user interface communicatively coupled with an execution
debug simulator of the system based on the portion of
execution data accessed without re-executing any of the
phurality of events.

axecution of events p via an library of
services within the logging framework. B35

|

US 9,189,367 B2

Page 2
(56) References Cited 2002/0042264 A1 4/2002 Kim
2002/0042843 Al 4/2002 Diec
VS, PATENT DOCUMENTS 20020002892 Al 62002 Raiel et al
¢l et al.
6,266,669 Bl 7/2001 Brodersen et al. 2002/0129352 Al 9/2002 Brodersen et al.
6,295,530 Bl 9/2001 Ritchie et al. 3883;813%% ﬁi igggg% ?Iubramatmiim etal.
6,324,568 Bl 11/2001 Diec uang et al.
6,324,693 Bl 11/2001 Brodersen et al. %88%;81 2% ;gﬁ ﬁi igggg% lstrOC{frsertl elt al.
6,336,137 Bl 1/2002 Leeetal. auber et al.
D454,139 S 3/2002 Feldcamp 2002/0162090 Al 10/2002 Parnell et al.
6,367,077 Bl 4/2002 Brodersen et al. 2002/0165742 A1 11/2002 Robins
6,393,605 Bl 5/2002 Loomans 2003/0004971 Al 1/2003 Gong et al.
6,405,220 Bl 6/2002 Brodersen et al. 2003/0018705 Al 1/2003 Chen et al.
6,434,550 Bl 8/2002 Warner et al. 2003/0018830 Al 1/2003 Chen et al.
6,446,089 Bl 9/2002 Brodersen et al. 3883;882283 é ﬁi 3%883 Iﬁzilne handran ot al
6,535,909 Bl 3/2003 Rust achandran et al.
6,549,908 Bl 4/2003 Loomans 2003/0069936 Al 4/2003 Warner et al.
6,553,563 B2 4/2003 Ambrose et al. 2003/0070000 Al 4/2003 Coker et al.
6,560,461 Bl 5/2003 Fomukong et al. 2003/0070004 Al 4/2003 Mukundan et al.
6,574,635 B2 6/2003 Stauber et al. 2003/0070005 Al 4/2003 Mukundan et al.
6,577,726 Bl 6/2003 Huang et al. 2003/0074418 Al 4/2003 Coker
6,601,087 Bl 7/2003 Zhu et al. 2003/0088545 Al 5/2003 Subramaniam et al.
6,604,117 B2 8/2003 Lim et al. 2003/0120675 Al 6/2003 Stauber et al.
6,604,128 B2 8/2003 Diec 2003/0151633 Al 82003 George et al.
6,609,150 B2 8/2003 Lee et al. 2003/0159136 Al 8/2003 Huang et al.
6,621,834 Bl 9/2003 Scherpbier et al. 2003/0187921 Al 10/2003 Diec
6,654,032 Bl 11/2003 Zhu et al. 2003/0189600 Al 10/2003 Gune et al.
6,665,648 B2 12/2003 Brodersen et al. 2003/0191743 Al 10/2003 Brodersen et al.
6,665,655 Bl 12/2003 Warner et al. 2003/0204427 Al 10/2003 Gune et al.
6.684.438 B2 2/2004 Brodersen et al. 2003/0206192 Al 11/2003 Chen et al.
6711565 Bl 3/2004 Subramaniam et al. 2003/0225730 A1 12/2003 Warner et al.
6,724,399 Bl 4/2004 Katchour et al. %883;88%225 2} }gggj ﬁfthwein etal.
6,728,702 Bl 4/2004 Subramaniam et al. o
6,728,960 Bl 4/2004 Loomans 2004/0015981 Al 1/2004 Coker et al.
6,732,095 Bl 5/2004 Warshavsky et al. 2004/0027388 Al 2/2004 Berg et al.
6,732,100 B1 5/2004 Brodersen et al. 2004/0128001 Al 7/2004 Levin et al.
6,732,111 B2 5/2004 Brodersen et al. 2004/0186860 Al 9/2004 Leeetal.
6,754,681 B2 6/2004 Brodersen_et al. 2004/0193510 Al 9/2004 Catahan, Jr. et al.
6,763,351 Bl 7/2004 Subramaniam et al. 2004/0199489 Al 10/2004 Barnes-Leon et al.
6,763,501 Bl 7/2004 Zhu ctal. 2004/0199536 Al 10/2004 Barnes Leon et al.
6,768,904 B2 7/2004 Kim 2004/0199543 Al 10/2004 Braud et al.
2’§§i§§3 g% lggggj ?“bfmta:llm etal. 2004/0249854 Al 12/2004 Barnes-Leon et al.
,804, ones et al.
6.826.565 B2 11/2004 Ritchie et al. 2004/0260534 Al 12/2004 Pak et al.
. 2004/0260659 Al 12/2004 Chan et al.
6,826,582 B1 11/2004 Chatterjee et al.]
2004/0268299 Al 12/2004 Lei et al.
6,826,745 B2 11/2004 Coker et al.
6,829,655 Bl 12/2004 Huang et al 2005/0050555 Al 3/2005 Exley et al.
6842748 Bl 1/2005 W fal. 2005/0091098 Al 4/2005 Brodersen etal.
6,850,895 B2 2/2005 Bre(x)r;l:rrsznzt al. 2005/0114511 Al* 5/2005 Davisetal. 709/226
6,850,949 B2 2/2005 Warner et al. 2005/0204356 Al* 9/2005 Sundararajan et al ... 717/176
7,340,411 B2 3/2008 Cook 2007/0083857 Al* 4/2007 Jiangetal. 717/130
7,620,655 B2 11/2009 Larsson et al. 2007/0169016 Al* 7/2007 Aakolketal. 717/136
8,266,592 B2 9/2012 Betoetal.ccoccvennnne 717/124 2008/0086479 Al* 4/2008 Fryetal.ccoevneree. 707/10
2001/0044791 Al 11/2001 Richter et al. 2008/0256517 Al* 10/2008 Atkinetal.o 7177124
2002/0022986 Al 2/2002 Coker et al. 2009/0198835 Al* 82009 Madhusudanan et al. 709/248
2002/0029161 Al 3/2002 Brodersen et al. 2010/0088683 Al* 4/2010 Golenderetal. 717/128
2002/0029376 Al 3/2002 Ambrose et al.
2002/0035577 A1 3/2002 Brodersen et al. * cited by examiner

US 9,189,367 B2

Sheet 1 of 7

Nov. 17, 2015

U.S. Patent

[0cl
0zt
[0zt
2.01S ele(2160
pue 'siemyjos
J— ‘2lempieH
— uoNnNoex3

[T uonejusiusidwy sseqejeq JuBUSHINI

1 pomawes Buibbon

IT uoneziuebiQ 1soH

GO} uoneziuehip Jawosny

GO} uoneziueBi() Jeuwojsn)

oor\n\\
L9l

Y50} uoneziueBio jswoisng

US 9,189,367 B2

Sheet 2 of 7

Nov. 17, 2015

U.S. Patent

0g1
210lS Bl1EQ

GTT uolejuaws)

cl

[}
2160}
pue ‘dIemyos
‘ajempieH
uoinosex3

dwy sseqeleq jueusl-finp

067 obeioig 0cz fowepy
JussIsiod N
T = 7 7T 7| gzzeuvssn
[
/ R
112 901088
T0Z Sa0iA18S |0 Aieiqr] pajeinsdeosuy
GC1 yomauwe.d buibbo]
011 uoneziuebiQ 1s0H

oom\\\\
AL

50} uoneziuebiQ Jewojsny

GC | HOMISN

50} uoneziueBiQ Jswoisny)

VG071 uoneziueBiQ ewoisny

US 9,189,367 B2

Sheet 3 of 7

Nov. 17, 2015

U.S. Patent

T 0zl
0ch -
0¢7 ebesoig 02z Aowsp
0Et T ualsIsiag
210}S ele(2160 e | —— — — —
oUE ‘21BM}j0S GZT tuelsl
U ‘alempueH > 507
e uoinoaxy $90IMJ3S
- J0 Aleig
apensdesu —
TTT uoneluawsidwy aseqeeq Jueus-yny Poie) E ¢l yomauwesy Buibbo
gic 05¢E
3
- VozE
—— 01¢ Jozhjpuy Bej4 aced),
76 QYoR) Bejf 80Bl] g

COT Jonias-qop)

Gz¢ slosseoaid pesddl MI0MA

01T voneziueblo 1504

¢ 9l

oom\\\«

5
%

US 9,189,367 B2

Sheet 4 of 7

Nov. 17, 2015

U.S. Patent

oel
l01S BlEQ

TTT UoNejuaws|

0zl

(4}
2160

pUE "alemyos
‘asempieH
Eleligule) o]

[
~]

dw| eseqeie(WBUSI-INY

T] Homatues Buibbor

GOz $991M88 10 Aeigr pelensdesuy

0l

Y
e
&

o
e
O
<

ey

jopnwig Bngeg uoinoexgy

GOT 4onI9s-gop

<€
e
o
o

(549 sjossasold peay] HI0M

L0
o
<t

- 011 uoneziuefio 1504

oov)l\\&

v Ol

US 9,189,367 B2

Sheet S of 7

Nov. 17, 2015

U.S. Patent

GOl

085 Idv Jeidepy wiopeld xedy

GIG idYy Buipuig eaep

0ZG I1dV |eusix3 xady

025
Jojejnuig
Bngagy uonnosxy

[
JOAIS-Gop

T0G omalugi
Buibbo |4y peseq alempieH

T0G omaute 4 BuiBBo |dy peseq alempieH

0G5 24018 ele(JusisIsiod

065
(shiossa00.d

G68
Aowapy

008 weishs

US 9,189,367 B2

Sheet 6 of 7

Nov. 17, 2015

099 ‘sjuaAa jo Ajesnid
au jo Aue Bugnoaxs-al INOYJIM PISSII0E BIBD LOINDOXS
10 uoipod 8y uo paseq welsAs ay) 10 Jojejnwis Bngap
UOIINO8Xa LR Ujim pajdnoo AIBARRIIUNLULLIOD BoRLIS]U} 188N
{eoydest e eia sjusaa jo Ayjesnid ay jo uopnoaxe Suleinwig

[95] ~yomausey Buibfo; syl uiyIm saoines

10 Aelq) peteinsdeaus e BIA PassSa0040 SJUDAS JO LIOINISXS
ay Buiguosap elep uoRNoaxa SPWa yiomawes Buibboj auy
uissaum “pomausel Buibbol ayy ein 1sanbas ayy Buissanciy

t

i

Too "SjUsAg Jo Ajjelnid
AU} JO UONNOAX® BU) 0} dASUOdSas PaYILLIG
Blep Uonnoaxa sy} Jo uoliod ayy Buisseody

] ‘uonejuswsidull aseqgeiep
JURLIBI-NLU B O} NAseUajUl A|SAIBDIUNUILIOD
yiomawey Hubbo| & 0} 1sanbal sy Hupusg

+

i

059 yomaiey Buibbo|
aU BlA Passa004d S1UBAS JO Alrind a4 Jo
Bngap uopnosxa alejnwis 0} 1senbas e Buineoey

GZ9 "UI218Y] PApPOILS
sBeyl agely siow 4o suo sy} Buey 1senbal ay) Buipiemio

4

A

079 ‘uoliesado dnyoo| sy uo
paseq 1senbal au ojui sbiey) eoely s10W 10 U0 sy Buipooul

S¥9 fiowow alempiey sy woy Jounsip pue ajesedas
alojselep usisisiad e o) walshs ay) jo Alowall sJempiey
B LUOJ BIBD UOHNOSXa 8y Jo uoiuad pammdes ay Buysniy

i

A

T10 1SaNbal 8U} YIIM PaJeIoosse

(Q1b10) Jeyguapt uoneziueBio Jusio & Jo (Q1BSN) JeyAuap]
138N € UO Paseq panlaoas Jsanbai ayy 1o} sBey asel} aiow 1o
QU0 Y} J0 JBAIAS-Gam ay eiA uogesado dn-yoo) e Bulwiopay

079 1sanbas ay)

»

U.S. Patent

19 1senbay sy} Jo} AlOR Ble Ssouaisiaud
10} BAOB Bq 0} pauluLIsiep Saouasajasd 9oBI) BIOW JO BUO BY} e0el) 210w J0 au0 ‘1azAjeue Bey a0l e ein ‘Buiuisieq
Uo paseq sjuaas Jo Ajesnid au} Jo uoynoaxa o} saisuodsal) ——
paljis Blep uo)nosxa syl Jo uoiod e 1ses; je Buunide) —
1 G089 -weshs e o Jonies-gem e Je jsenbas e Buinesy
009 7 T by

9914 s]

U.S. Patent Nov. 17, 2015 Sheet 7 of 7 US 9,189,367 B2

L7 FIG. 7
A . 700
_ PROCESSOR - T
PROCESSING| [>
N 726 4
.| LoGIC PERIPHERAL -
o - DEVICE
=
MAIN MEMORY ~ 730
- ALPHANUMERIC
EE&A&TTEBN B - | INPUT DEVICE
el CURSOR
714—| CONTROL DEVICE
lf—————
TRACE | |73
_|PREFERENCES <«—| USER INTERFACE
T3 3
HARDWARE BASED 716
APILOGGING |le—»
FRAMEWORK INTEGRATED
™| SPEAKER
— 708
NETWORK 4 18
‘NTERm%% CARD ¢— SECONDARY MEMORY
\ MACHINE-ACCESSIBLE | |, 731
\ <, | STORAGE MEDIM
722
| SOFTWARE [}

US 9,189,367 B2

1
METHODS AND SYSTEMS FOR DEBUGGING
BYTECODE IN AN ON-DEMAND SERVICE
ENVIRONMENT

CLAIM OF PRIORITY

This application is related to, and claims priority to, the
provisional utility application entitled “Methods and Systems
for Debugging Bytecode in an On-Demand Service Environ-
ment,” filed on Apr. 20, 2010, having an application No.
61/325,955.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

TECHNICAL FIELD

Embodiments of the invention relate generally to the field
of computing, and more particularly, to methods and systems
for debugging byte code in an on-demand service environ-
ment.

BACKGROUND

The subject matter discussed in the background section
should not be assumed to be prior art merely as a result of its
mention in the background section. Similarly, a problem
mentioned in the background section or associated with the
subject matter of the background section should not be
assumed to have been previously recognized in the prior art.
The subject matter in the background section merely repre-
sents different approaches, which in and of themselves may
also correspond to embodiments of the claimed inventions.

Any programmer or software engineer can readily attest to
the need to perform debugging and software quality testing
and compliance operations on executable code. For example,
the need to perform debugging operations may arise when
new functionality is authored, when existing programs are
modified to introduce new features or functionality, or when
systems and datastores that are referenced by the executable
code are modified in some way.

More specifically, syntax errors may be introduced when
an executable program is authored, such as a missing semi-
colon or a mistyped variable name or type, or logic errors can
be similarly introduced, some of which may not be discover-
able via automated compiler and syntax checking tools.

In a traditional implementation, executable code is
authored by a programmer on behalf of a host organization
and then executed within that host organization. In such an
environment, the host organization may have a “live” or a
“production” environment in which executable code is
released and serves to fulfill the business objectives of the
organization. In such a traditional implementation, the host
organization may also utilize a “test” environment or a “sand-
box” environment that closely replicates the production envi-
ronment, but in which unreleased code can be tested for
quality and compliance without negatively impacting actual
customers of the host organization that are utilizing the pro-
duction environment.

10

15

20

25

30

35

40

45

50

55

60

65

2

Generally, such a structure is a “single-tenant™ environ-
ment in which a single host organization utilizes underlying
hardware and software operating within the host organization
to execute the executable code. Because the environment is a
single-tenant environment, traditional debugging utilities are
sufficient to debug code (e.g. by stepping through the code
either line by line, or progressing up to a designated point, at
which execution is stopped, allowing the programmer to ana-
lyze the detailed program flow, the status of variables, includ-
ing their contents and input/output (TO) operations to datas-
tores, databases, memory, or to files, and so forth).

Traditional debugging utilities however are insufficient for
debugging executable code within a “multi-tenant” environ-
ment in which underlying software and hardware elements
within a host organization are shared by multiple distinct and,
usually, remotely located customer organizations.

For example, traditional debugging utilities require that
execution of a tested codebase has to be halted, stopped, or
paused at specified points as designated by the programmer
for further analysis. Although stopping code execution within
a single-tenant environment is acceptable as no other entity is
impacted, stopping code execution in a multi-tenant environ-
ment is not acceptable as execution would be stopped for all
entities on the shared hardware and software resource ele-
ments provided by the host organization.

A test-environment that does not allow for concurrent
execution of multiple tenants’ code bases who are sharing the
underlying hardware and software resources could be utilized
instead, however, such a test environment would not closely
replicate the actual production or live execution environment
of a multi-tenant execution environment, and thus, would not
provide an adequate test, debug, and quality verification envi-
ronment, due to the differences between the production
execution environment and the modified testing environment.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are illustrated by way of example, and not by
way of limitation, and can be more fully understood with
reference to the following detailed description when consid-
ered in connection with the figures in which:

FIG. 1 illustrates an exemplary architecture in which
embodiments may operate;

FIG. 2 illustrates an alternative exemplary architecture in
which embodiments may operate;

FIG. 3 illustrates an alternative exemplary architecture in
which embodiments may operate;

FIG. 4 illustrates an alternative exemplary architecture in
which embodiments may operate;

FIG. 5 shows a diagrammatic representation of a system in
which an embodiments of the invention may operate, be
installed, integrated, or configured;

FIG. 6 is a flow diagram illustrating a method for simulat-
ing execution debug in a multi-tenant database environment
in accordance with one embodiment; and

FIG. 7 illustrates a diagrammatic representation of a
machine in the exemplary form of a computer system, in
accordance with one embodiment.

DETAILED DESCRIPTION

Described herein are systems, devices, and methods for
debugging bytecode in an on-demand service environment.
In one embodiment, the mechanisms, systems, and methods
simulate execution debug in a multi-tenant database environ-
ment. For example, in one embodiment, a multi-tenant data-
base implementation 115 executes within a host organization,

US 9,189,367 B2

3

in which the multi-tenant database implementation 115
includes elements of hardware and software that are shared by
a plurality of separate and distinct customer organizations,
each of the separate and distinct customer organizations may
be remotely located from the host organization having the
multi-tenant database implementation 115 executing therein.

In such an embodiment, a logging framework is commu-
nicatively interfaced to the multi-tenant database implemen-
tation, wherein the logging framework includes an encapsu-
lated library of services for interfacing with the multi-tenant
database implementation, and wherein the encapsulated
library of services emits execution data describing the execu-
tion of events processed via the encapsulated library of ser-
vices. Further included in this embodiment is a web-server to
receive arequest, a trace flag analyzer to determine that one or
more trace preferences are active for the request, one or more
work thread processors to execute a plurality of events against
the multi-tenant database implementation, based on the
request, via the logging framework, and a listener coupled
with the logging framework to capture at least a portion of the
execution data emitted responsive to execution of the plural-
ity of events.

In the following description, numerous specific details are
set forth such as examples of specific systems, languages,
components, etc., in order to provide a thorough understand-
ing of the various embodiments. It will be apparent, however,
to one skilled in the art that these specific details need not be
employed to practice the disclosed embodiments. In other
instances, well known materials or methods have not been
described in detail in order to avoid unnecessarily obscuring
the disclosed embodiments.

In addition to various hardware components depicted in the
figures and described herein, embodiments further include
various operations which are described below. The operations
described in accordance with such embodiments may be per-
formed by hardware components or may be embodied in
machine-executable instructions, which may be used to cause
a general-purpose or special-purpose processor programmed
with the instructions to perform the operations. Alternatively,
the operations may be performed by a combination of hard-
ware and software.

Embodiments also relate to a system or apparatus for per-
forming the operations herein. The disclosed system or appa-
ratus may be specially constructed for the required purposes,
or it may comprise a general purpose computer selectively
activated or reconfigured by a computer program stored in the
computer. Such a computer program may be stored in a non-
transitory computer readable storage medium, such as, but
not limited to, any type of disk including floppy disks, optical
disks, CD-ROMs, and magnetic-optical disks, read-only
memories (ROMs), random access memories (RAMs),
EPROMs, EEPROMs, magnetic or optical cards, or any type
of media suitable for storing non-transitory electronic
instructions, each coupled to a computer system bus. In one
embodiment, a computer readable storage medium having
instructions stored thereon, causes one or more processors
within a multi-tenant database environment to perform the
methods and operations which are described herein. In
another embodiment, the instructions to perform such meth-
ods and operations are stored upon a non-transitory computer
readable medium for later execution.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus nor
are embodiments described with reference to any particular
programming language. [t will be appreciated that a variety of
programming languages may be used to implement the teach-
ings of the embodiments as described herein.

10

15

20

25

30

35

40

45

50

55

60

4

FIG. 1 illustrates an exemplary architecture 100 in which
embodiments may operate. Architecture 100 depicts network
125 as connecting the host organization 110 to various cus-
tomer organizations 105A, 105B, and 105C. Network 125
may include, for example, the Internet, in which each of the
customer organizations 105A, 105B, and 105C and the host
organization 110 are communicatively interfaced to each
other through a series of Local Area Networks (LANs), Wide
Area Networks (WANSs), or by traversing through various
combinations of privately accessible network environments
and publicly accessible network environments. Some or all of
the network connectivity between the various customer orga-
nizations 105A, 105B, and 105C and the host organization
110 may include a Virtual Private Network (VPN) connec-
tion, encrypted tunnels, or may include non-private and non-
encrypted connectivity.

Importantly, customer organizations 105A, 105B, and
105C access computing resources within the host organiza-
tion 110 remotely, via network 125. Customer organizations
105A,105B, and 105C are not co-located with, or part of the
host organization 110. Accordingly, from the perspective of
each of the customer organizations 105A, 105B, and 105C
which are depicted, the computing resources provided by the
remote host organization 110 can be described as “cloud
computing services,” as the services offered by the remote
host organization 110 are provided to the respective customer
organizations 105A, 105B, and 105C through the network
125, and do not require the customer organizations 105A,
105B, and 105C to host, operate, manage, or install hardware
or software to implement the multi-tenant database imple-
mentation 115 which is depicted as being provided by the host
organization 110.

In one embodiment, host organization 110 provides a sys-
tem for simulating execution debug in a multi-tenant database
environment. In such an embodiment, the host organization
110 provides a multi-tenant database implementation 115 in
which underlying hardware and software elements imple-
ment database functionality and a code execution environ-
ment within the host organization 110 and in which the hard-
ware and software elements of the multi-tenant database
implementation 115 are separate and distinct from the plural-
ity of customer organizations (105A-105C). In such an
embodiment, each of the separate and distinct customer orga-
nizations (105A-105C) may be remotely located from the
host organization 110 having the multi-tenant database
implementation 115 executing therein.

The hardware and software elements of the multi-tenant
database implementation 115 include at least a datastore 130
and execution hardware, software, and logic 120. The datas-
tore may be, for example, persistent data storage for storing
information on behalf of a database controlled by the execu-
tion hardware, software, and logic 120 of the multi-tenant
database implementation 115. For example, in one embodi-
ment, a relational database embodied within the execution
hardware, software, and logic 120 stores its underlying
records, rows, and data structures upon a Storage Area Net-
work (SAN), upon hard disk drives, and/or upon a Redundant
Array of Independent Disks (RAID) arrangement of persis-
tent storage devices within data store 130.

Also depicted within Host organization 110 is a logging
framework 135 communicatively interfaced to the multi-ten-
ant database implementation.

FIG. 2 illustrates an alternative exemplary architecture 200
in which embodiments may operate. In particular, logging
framework 135 is depicted in additional detail.

Logging framework 135 includes an encapsulated library
of'services 205. In one embodiment, the encapsulated library

US 9,189,367 B2

5

of'services 205 provides functionality for interfacing with the
multi-tenant database implementation 115 as depicted by the
two arrows pointing toward and away from the multi-tenant
database implementation 115. In one embodiment, the encap-
sulated library of services 205 emits execution data 210
describing the execution of events processed via the encap-
sulated library of services 205, and more specifically, pro-
cessed via one or more individual services 211 which are
embodied within the encapsulated library of services 205.

Each of the services 211 provide various functional capa-
bilities, such as providing functionality for performing an
update, a read, a write, a flush, or a commit operation upon
database logic within the multi-tenant database implementa-
tion 115. Each of the various individual services 211 need not
have any awareness or internal acknowledgement that they
are embodied within the encapsulated library of services 205,
but rather, may function as though they are autonomous
library components or individual services 211.

The encapsulated library of services 205 provides func-
tionality for wrapping the individual services 211 with addi-
tional logic (e.g., additional executable code or functionality)
that causes executable lines of code and operations performed
by the individual services to emit execution data 210 for the
various operations taken.

For example, in one embodiment, each line of code that is
executed within each of the individual services 211 triggers
the emission of execution data 210 from the individual ser-
vice 211 describing one or more of: the line of code that was
executed, the result code/error code of the executed line of
code, the content of any variable accessed (e.g. instantiated,
written to, or read from) by the executed line of code, a
customer identifier (UserID) associated with the executed
line of code, an Organization identifier (OrgID) associated
with the executed line of code, and/or process identifiers/
thread identifiers associated with the particular line of code
executed.

In certain embodiments, all events (such as every distinctly
identifiable line of code that is executed) causes the emissions
of execution data 210 from the individual services 211 per-
forming the execution. For example, by forcing all execution
to pass through the logging framework 135, and specifically,
the encapsulated library of services 205, every single execu-
tion event can be forced to emit useful execution data which
can then be used to generate a full and complete transcript of
execution to be used later for simulating execution debug,
which is described in fuller detail below. Forcing the emission
of execution data 210 does not require or cause execution to
be stopped or halted for any user of the system, which is
important for other customer organizations 105A-C making
use of the multi-tenant database implementation 115. Obvi-
ously, other customer organizations 105A-C are not well
served if their own execution is required to be paused, so that
another customer organization 105A-C making use of the
multi-tenant database implementation 115 can perform
debugging operations. Such a working environment would
predictably cause day to day operations to quickly deteriorate
to a point where none of the customer organizations 105A-C
could effectively make use of the shared resources provided
by the multi-tenant database implementation 115.

The execution data 210 emitted from each of the individual
services 211 is captured and passed on by the encapsulated
library of services 205 which embodies each of the various
individual services.

In one embodiment, the encapsulated library of services
205 is responsible for processing all interactions requested of
the multi-tenant database implementation 115 within the host
organization, thus ensuring that all operations executed

10

15

20

25

30

35

40

45

50

55

60

65

6

against or processed by the multi-tenant database implemen-
tation 115 pass through the encapsulated library of services
205, regardless of the functionality or operation to be
executed, and thus further ensuring that any operation or
executable line of code processed against the multi-tenant
database implementation 115 triggers and emits execution
data 210.

In one embodiment, the execution data 210 emitted by the
encapsulated library of services 205 provides a “transcript” of
all execution events that occur within the multi-tenant data-
base implementation 115. For example, in one embodiment,
the collection of execution events emitted by the encapsulated
library of services 205 provides a full and complete view of
processing for each individual line of code executed or pro-
cessed by the multi-tenant database implementation 115.

In one embodiment, the execution data 210 emitted from
the encapsulated library of services 205 is captured or buff-
ered by memory 220, such as a high-performance hardware
memory having a very high write speed capable of capturing
large amounts of incoming data from the logging frame-
work’s encapsulated library of services 205. For example, in
one embodiment, memory 220 is a hardware implemented
memory device having a high-data-rate Random Access
Memory (RAM). In one embodiment, the RAM memory is
volatile memory, such as a Dynamic RAM (DRAM) module
or a Static RAM (SRAM) memory module. In a particular
embodiment, memory 220 includes a high-data-rate RAM
device that caches at least a portion of the execution data 210
emitted responsive to execution of a plurality of events which
are executed against the multi-tenant database implementa-
tion 115 via the encapsulated library of services 205. In one
embodiment, the execution data 210, or a portion of the
execution data 210 emanating from the encapsulated library
of services 205 is cached until a flush command is received.

A multi-tenant database implementation 115 such as that
which is described herein has the capability of producing and
outputting execution data 210 that dwarfs the scale of data
producible via a traditional single-tenant database implemen-
tation. This is caused by the multiplicative effect of the mul-
tiple “tenants” of the database implementation (e.g., the mul-
tiple separate and distinct customer organizations 105A,
105B, and 105C as depicted, each of which having their own
individual processing needs.

The amount of execution data 210 is further exacerbated by
the need to track not only which events are executed, but also
by the further need to track “on behalf of whom” the events
were executed. Specifically, certain embodiments track each
executed line of code according to either an OrglD (e.g. what
customer organization the code is being executed for, on
behalf of, or at the request of), or a UserID (e.g., what autho-
rized user of the multi-tenant database implementation 115 is
the code being executed for, on behalf of, or at the request of).
In certain embodiments, a UserID can be correlated with a
unique OrglD, for example, if a customer organization has
multiple authorized users associated with it, and each UserID
associated with the particular customer organization (e.g.,
105A-C) is only associated with one particular customer
organization 105.

As noted previously, it is not acceptable to stop, halt, or
otherwise pause execution within the multi-tenant database
implementation 115 on behalf of one particular customer
organization 105 so that its code may be debugged, as doing
so would cause execution to be halted for all other customer
organizations (e.g., 105A-C) contemporaneously executing
code against the multi-tenant database implementation 115.
Similarly, it is equally undesirable to cause a potential service
degradation or a reduction in overall performance speed of

US 9,189,367 B2

7

the multi-tenant database implementation 115 by requiring
the database to emit and persistently store large amounts of
execution data 210, a task which could cause unacceptable IO
delays in writing extremely large amounts of data to persis-
tent storage (e.g., to hard disk, etc.). Moreover, it may be the
case that only data for a particular customer organization
105A-C or a particular UserlD is required for debugging
purposes, and thus, all other execution data 210 output from
the encapsulated library of services 205 can safely be ignored.

Therefore, in accordance with one embodiment, execution
data 210 emitted from the encapsulated library of services
205 is streamed to a listener 225 coupled with the logging
framework 135 to capture at least a portion of the execution
data 210 emitted responsive to execution of the plurality of
events. In one embodiment, the high-speed memory device
(e.g., memory 220) which provides temporary caching/buff-
ering of the emitted execution data 210 is part of the listener
225. In an alternative embodiment, memory 220 is separate
from, but coupled with listener 225.

In one embodiment, listener 225 functions to monitor all
execution data 210 emitted or streamed from the encapsulated
library of services 205 for particular signatures upon which
the listener 225 can screen data. For example, those signa-
tures may include a specified OrgID, a specified UserlD,
execution against a particular table or data structure within
the multi-tenant database implementation 115, or against a
particular process-identifier (such as a master process ID or a
parent process ID associated with a block of execution).

Because streaming or caching data to a high-speed/high-
data rate hardware memory device such as volatile RAM does
not incur as substantial of 10 costs for the execution platform
as streaming or caching to a persistent storage device, such as
a hard disk drive, the execution data 210 can be temporarily
captured during the actual execution phase of the plurality of
events to be executed without causing an unacceptable per-
formance degradation of the execution platform, compared
to, for example, attempting to write all of the execution data
210 to much slower non-volatile persistent storage as it is
emitted from the encapsulated library of services 205.

In one embodiment, none of the execution data 210 cached
by memory 220 is written to persistent (e.g., non-volatile
storage) until control is returned from the multi-tenant data-
base implementation 115 back to, for example, an end-user
client machine that requested or triggered the execution of the
plurality of events against the multi-tenant database imple-
mentation 115. For example, once the multi-tenant database
implementation 115 completes execution of the requested
events, or services, or functionality (such as a series of opera-
tions involving the execution hardware, software, and logic
120 and the data store 130 of the multi-tenant database imple-
mentation 115) control is returned to an end-user or an end-
user client machine within, for example, one of the customer
organizations 105A-C.

In one embodiment, once control is returned from the
multi-tenant database implementation 115, the logging
framework 135 triggers a flush command of the execution
data 210 cached by memory 220.

For example, in one embodiment, a portion of the execu-
tion data 210 is flushed from the high-data-rate RAM (e.g.,
memory 220) to a non-volatile storage device 230. In such an
embodiment, execution data 210 is transient while in memory
220 and persistent when placed into persistent storage 230. In
one embodiment, the non-volatile storage device 230 is per-
sistent storage on a hard-disk drive within the host organiza-
tion 110 having space allocated to a customer organization
associated with the request (e.g., a service request) that trig-
gered the execution of the plurality of events. In another

10

15

20

25

30

35

40

45

50

55

60

65

8

embodiment, the persistent storage is located within the
multi-tenant database implementation 115 in an area allo-
cated to a customer organization associated with the request.
For example, a flush command initiated by the logging frame-
work 135 may cause a portion or a subset of the cached
execution data 210 available in memory 220 to be flushed to
persistent storage 230 within the logging framework 135. In
an alternative embodiment, a flush command initiated by the
logging framework 135 may cause a portion or a subset of the
cached execution data 210 available in memory 220 to be
flushed directly to the multi-tenant database implementation
115 for persistent storing, for example, via data store 130,
bypassing persistent storage 230 which is local to the logging
framework 135. In one embodiment, listener 225 initially
captures, moves, or flushes a portion of transiently stored
execution data 210 from memory 220 into persistent storage
230 where the portion of execution data 210 is then stored in
a persistent manner and subsequently migrates or moves the
portion of execution data 210 from persistent storage 230 to
alternative persistent storage, such as data store 130. In such
an embodiment, because control is already returned to the
requesting end-user or end-user client machine prior to
executing a flush from memory 220 to persistent storage 230
and/or data store 130, the flush operation would appear to
occur “behind the scenes” to the user, and would thus not be
perceived as a performance slow down owing to the delay in
writing the transiently cached execution data 210 in memory
220 to persistent storage device 230 or alternative persistent
storage such as data store 130. Similarly, because execution is
complete, there is no need to pause, slow, or halt execution of
the code for the requesting customer organization 105A-C or
for other customer organizations 105A-C which are contem-
poraneously executing code via the shared resources within
the host organization 110.

In a particular embodiment, the execution data 210 persis-
tently stored (e.g., upon persistent storage 230 or data store
130) is subsequently transmitted to an end-user client
machine having originated the request responsive to a
retrieval request. For example, the end-user client machine
having originated the request may subsequently request
retrieval of the portion of execution data 210 pertinent to the
execution request, such as data associated with a specified
OrgID and/or UserID, at which point the portion of execution
data 210 requested by the end-user client is responsively
transmitted to the end-user client’s machine located within a
customer organization 105A-C via network 125, thus allow-
ing the end-user client’s machine to store the portion of the
execution data 210 locally within the customer organization
105A-C. For example, the end-user client’s machine may
store the retrieved portion of execution data on a hard disk or
other non-volatile storage device local to the end-user client’s
machine. In such an embodiment, the end-user client machine
is remote and distinct from the system of the host organization
that implements the described logging framework 135 and
multi-tenant database implementation 115.

FIG. 3 illustrates an alternative exemplary architecture 300
in which embodiments may operate. Depicted within archi-
tecture 300 is a web-server 305 and a trace flag analyzer 310.

In a particular embodiment, host organization 110 receives
a request 315, for example, from a customer organization
105A-C described previously. In such an embodiment, the
request 315 is received at the host organization 110 via web-
server 305. In one embodiment, web server 305 provides a
web-based interface to a end-user client machine originating
the request (e.g., such as an end-user client device located
within a customer organization 105A-C). The request 315

US 9,189,367 B2

9

constitutes a request for services from the multi-tenant data-
base implementation 115 operating within the host organiza-
tion 110.

In one embodiment, the web-server 305 contains a trace
flag analyzer 310 having functionality to determine whether
one or more trace preferences are active for the request. For
example, in a particular embodiment, trace preferences are
transmitted within the request 315 itself, and the trace flag
analyzer 310 extracts the preferences from the request 315 to
determine which, if any, trace flags are active for the particu-
lar request 315 for services. In an alternative embodiment,
trace flags are not encoded within the request 315 for services,
and thus, the trace flag analyzer 310 determines which, if any,
trace flags are active for the request 315 by fetching the trace
flags from the multi-tenant database implementation 115 or
from a trace flag cache 320 which is configured to store or
cache trace flag preferences to be corresponded or associated
with incoming requests 315 from customer organizations
105A-C.

In a particular embodiment, trace flag analyzer 310 deter-
mines that one or more trace preferences are active based on
a UserID associated with an incoming request 315. In an
alternative embodiment, trace flag analyzer 310 determines
that one or more trace preferences are active based on an
organization identifier OrglD associated with the request 315.
In yet another embodiment, trace flag analyzer 310 deter-
mines that one or more trace preferences are active based on
aconsideration of both the UserID and additionally the OrgID
associated with an incoming request 315. In one embodiment,
the trace flag analyzer 310 determining that one or more trace
preferences are active includes the trace flag analyzer 310
performing one or more of the following operations: (1) com-
paring a UserID embodied or encoded within the request 315
against a plurality of trace flags cached in a memory of the
system, such as within trace flag cache 320; (2) reading the
one or more trace preferences for a UserID, OrgID, or both, as
embodied or encoded within the request 315, from the multi-
tenant database implementation 115 based on the correspond-
ing UserID, OrgID, or both; (3) reading the one or more trace
preferences directly from the request 315 received, for
example, where the trace flag preferences are encoded
directly into the request 315 by the originating end-user
machine or the originating client origination 105A-C; or (4)
having the trace flag analyzer 310 correspond the UserID to
an OrglD associated with the request 315 and determining the
one or more trace preferences specified for the OrgID.

In one embodiment, trace flag cache 320 includes a
memory cache which is communicatively interfaced to the
multi-tenant database. In one embodiment, the trace flag
cache 320 caches a plurality of trace flags persistently stored
by the multi-tenant database, wherein each trace flag is asso-
ciated with either a UserID, an OrgID, or both. In one embodi-
ment, each trace flag cached within trace flag cache 320
indicates a trace preference is active for the associated Use-
rID, and/or OrgID.

Referring back to web-server 305 of FIG. 3, in one embodi-
ment, web-server 305 receives the request 315 for services
from an end-user client machine (e.g., such as a client device
located at one of customer organizations 105A-C) and then
web-server 305 encodes one or more trace flags into the
request 315 based on the one or more trace preferences cor-
responding to a user identifier UserID or an OrgID associated
with the request. In one embodiment, web-server 305 then
forwards the request 315 having the one or more trace flags
encoded therein to one or more work thread processors 325 to
process the request 315. For example, request 316 having the
one or more trace flags encoded therein is depicted as being

10

20

25

30

35

40

45

55

60

65

10
forwarded by web-server 305 to one or more of the work
thread processors (e.g., 325A, 325B, and 325C) for process-
ing. In such an embodiment, the one or more trace flag pref-
erences do not arrive encoded within request 315, but rather,
are looked up and associated by web-server 305, encoded
within a modified request 316 having the one or more trace
flag preferences injected into the request, and then forwarded
for processing, by the work thread processors 325 which in
turn may engage logging framework 135 as described above.

Regardless of the manner in which the trace flags are deter-
mined to be active for a particular request, the trace flags are
eventually relied upon by listener 225 to determine what
portion, if any, of execution data 210 emitted from the encap-
sulated library of services 205 is to be captured and persis-
tently stored for later use. As noted above, in certain embodi-
ments, all executable events cause the emission of execution
data 210 and this occurs without regard to any particular trace
flag being active or inactive. However, in such an embodi-
ment, listener 225 can screen or sift through the execution
data 210 cached into memory 220 and flush or persistently
store only those events determined to be of interest based
upon the trace flags which are active.

One benefit of managing trace flags in such a manner is that
non-administrative users can activate debugging options
within a system architecture that traditionally does not allow
end-users or customer organizations 105A-C to have any
control over debugging preferences. For example, using tra-
ditional database implementations, debugging operations
must be activated or launched by a system administrator or a
database administrator, or via a user account having such
permissions. However, by encapsulating all executable events
within the encapsulated library of services 205, execution
data 210 is forced to be emitted, and the listener 225 is then
enabled to screen and capture the desirable portions of that
execution data 210 based on trace flags which can be activated
by end-users, customer organizations 105A-C, system
administrators, or any entity having permissions to cause a
trace flag to be active, without regard to whether that entity
has administrative privileges within, for example, the multi-
tenant database implementation 115.

In one embodiment, once execution for a particular request
315 is complete, all execution data 210 emitted responsive to
that particular request 315 is either purged or overwritten in
the memory 220 by subsequent caching of execution data
210. Accordingly, in such an embodiment, only execution
data 210 specified by the listener 225 to be flushed to persis-
tent storage device 230 is permanently maintained.

FIG. 4 illustrates an alternative exemplary architecture 400
in which embodiments may operate. In one embodiment, host
organization 110 includes an execution debug simulator 430
communicatively interfaced with web-server 305 and work
thread processors 325A, 3258, and 325C.

In one embodiment, execution debug simulator 430
accesses the portion of the execution data 210 emitted respon-
sive to the execution of the plurality of events. For example, in
one embodiment, a request 405 received at web-server 305
requests an execution debug simulation to be run via host
organization 110. In a particular embodiment, web-server
305 forwards the request for execution simulation 405 to
work thread processors 325 for processing, which in turn
retrieve a transcript of execution events 410 corresponding to
aprior request for services (e.g., such as a transcript of execu-
tion events 410 corresponding to the processing of request
315 described above which would have been emitted within
execution data 210 corresponding to the request). In a par-
ticular embodiment, work thread processors 325 then forward
the transcript of execution events 410 to execution debug

US 9,189,367 B2

11

simulator 430 which then sends a response 415 to the
requestor, the response 415 containing information necessary
to simulate execution debug of the prior request (e.g., request
315).

In one embodiment, execution debug simulator 430 simu-
lates execution of the plurality of events via a graphical user
interface communicatively coupled with the execution debug
simulator 430, wherein simulating execution of the plurality
of events includes at least presenting output corresponding to
execution of one or more of the plurality of events based on
the portion of execution data 210 emitted and retrieved within
the transcript of execution events 410. In such an embodi-
ment, the portion of execution data 210 emitted and retrieved
as the transcript of execution events 410 is accessed and
retrieved without re-executing any of the plurality of events
for the original request (e.g., request 315 described previ-
ously).

In one embodiment, the original request 315 triggers one or
more trace debug preferences to be active and thus triggers at
least a portion of the execution data 210 emitted to be persis-
tently stored and the subsequent request 405 requesting
execution debug simulation does not trigger any trace flag
preferences to be active, and thus, any execution data 210
emitted in fulfillment of request 405 is not stored persistently.

In one embodiment, execution debug is described as a
“simulation” or provided via a “simulator” because standard
execution debug operations (e.g., pausing, stopping, or halt-
ing operation, analyzing variable inputs/outputs, analyzing
command return codes, formed SQL queries, data sets
returned subject to SQL queries, etc.) are not performed dur-
ing execution of the actual request (e.g., 315) causing the
execution data 210 to be generated and emitted, but rather,
because the transcript of execution events 410 is later
retrieved/accessed after the original request (315) has been
completed. For example, execution debug simulator 430 can
“re-play” or “simulate” the original execution by referencing
the persistently stored execution data 210 emitted without
requiring that any portion of the original request 315 be
re-executed or reprocessed.

In such a fashion, other tenants or customer organizations
105A-C which rely upon uninterrupted execution and pro-
cessing of work via the host organization’s resources, includ-
ing the multi-tenant database implementation 115, can have
their respective requests processed efficiently without inter-
ruption by the need to perform execution debug on behalf of
one of the plurality of customer organizations’ 105A-C
execution requests.

FIG. 5 shows a diagrammatic representation of a system
500 in which an embodiments of the invention may operate,
be installed, integrated, or configured.

In one embodiment, system 500 includes a memory 595
and a processor or processors 590. For example, memory 595
may store instructions to be executed and processor(s) 590
may execute such instructions. System 500 includes bus 515
to transfer transactions and data within system 500 among a
plurality of peripheral devices communicably interfaced with
bus 515. System 500 further includes a persistent data store
550 (e.g., a memory, hard drive, multi-tenant database imple-
mentation, or a communications path to such a persistent data
store or storage location). System 500 further includes web-
server 525, for example, to receive requests, return responses,
and otherwise interface with remote clients, such as client
devices located within customer organizations 105A-C. Sys-
tem 500 is further depicted as having an execution debug
simulator 520 therein which has implementing logic to, for

40

45

12

example, retrieve execution debug transcripts and provide an
execution debug environment, interface, GUI, or services to
requesting clients.

Distinct within system 500 is a hardware based API log-
ging framework 501 which includes Apex External API 570,
Java Binding API 575, and an Apex Platform Adapter API
580, having implementing logic thereon. For example, in one
embodiment, hardware based API logging framework 501
includes Apex External API 570 that is an outward facing API
designed to be consumed (e.g., referenced or accessed) by
remote customer organizations (e.g., 105A-C of a host Enter-
prise Organization (e.g., 110), in which the Apex External
API 570 specifies how users within the remote customer
organizations soliciting resources from system 500 may
access a reference to an Apex type (class or interface), create
an instance of the type, and execute methods on the instance,
for example, methods or requests that are to be processed via
processor(s) 590 and or the work thread processors 325
described previously.

Java™ Binding API 575 or a Java™ compatible Binding
API 575 depicted within the hardware based API logging
framework 501 extends Apex with capabilities defined by a
Java™ compatible programming environment, wherein the
Java™ Binding API allows new types to be added to Apex
backed by corresponding Java™ types within the Java™
compatible programming environment, and wherein Java™
compatible methods of the Java™ compatible programming
environment are enabled to be invoked from within Apex via
a type mapping between Apex and the Java™ compatible
programming environment. In such an embodiment, the new
“types” to be added to Apex and backed by corresponding
Java™ types are not specified or natively supported by stan-
dard Java™ implementations, but rather, provide and enable
new functionality within the described Apex structure as sup-
ported by the hardware based API logging framework 501.

An Apex Platform Adapter API 580 within the hardware
based API logging framework 501 improves layering
between Apex interfacing components of the system 500. For
example, the Apex Platform Adapter API 580 accesses Apex
from lower layers of an associated Apex platform environ-
ment by clearly defining the implementing communication
and transaction details expected from an associated Apex
platform environment.

Inone embodiment, each ofthe Apex External AP1570, the
Java Binding API 575, and the Apex Platform Adapter API
580 further include a plurality of unit tests, wherein each of
the unit tests include functionality to test a plurality of layers
of the associated Apex platform environment independently.
For example, each of the unit tests may be configured to test
functionality of one or more interfaces of the hardware based
API logging framework 501 without engaging or requiring
execution of underlying business logic behind the one or
more interfaces, thus permitting debug and diagnostic activi-
ties in a manner that is isolated from the underlying business
logic distinct from functionality of the one or more interfaces.
such as that which is described above in accordance with
various embodiments of the invention. Stated differently, the
isolated “debug and diagnostic activities” to be performed
without “engaging or requiring execution of the underlying
business logic” provides a simulator for the execution debug
(e.g., viaexecution debug simulator 520) without interrupting
other transactions and data services conducted via system
500.

In one embodiment, the hardware based API logging
framework 501 encapsulates all executable events processed
within system 500 thus causing execution data to be emitted
by the execution of such events. This execution data may then

US 9,189,367 B2

13

be utilized by execution debug simulator 520 to provide
debug and diagnostic activities without the need to engage or
re-execute underlying business logic.

FIG. 6 is a flow diagram illustrating a method 600 for
simulating execution debug in a multi-tenant database envi-
ronment in accordance with one embodiment. Method 600
may be performed by processing logic that may include hard-
ware (e.g., circuitry, dedicated logic, programmable logic,
microcode, etc.), software (e.g., instructions run on a process-
ing device to perform operations such as data capture and
debug simulation), or a combination thereof. In one embodi-
ment, method 600 is performed by hardware logic, such as the
hardware based API logging framework depicted at element
501 FIG. 5 and/or the execution debug simulator 520 as
depicted in FIG. 5. Some of the blocks and/or operations
listed below are optional in accordance with certain embodi-
ments. The numbering of the blocks presented is for the sake
of clarity and is not intended to prescribe an order of opera-
tions in which the various blocks must occur.

Method 600 begins with processing logic receiving a
request at a web-server of a system (block 605). At block 610,
processing logic determines one or more trace preferences are
active for the request. Such a determination may be per-
formed by a trace flag analyzer.

At block 615, processing logic performs a look-up opera-
tion (e.g., via the web-server) of the one or more trace flags for
the request received based on a user identifier (UserID) or a
client organization identifier (OrgID) associated with the
request. At block 620, processing logic encodes the one or
more trace flags into the request based on the lookup opera-
tion, and at block 625, processing logic forwards the request
having the one or more trace flags encoded therein.

Atblock 630, processing logic causes the request to be sent
a logging framework communicatively interfaced to a multi-
tenant database implementation. At block 635, the request is
processed via the logging framework, wherein the logging
framework emits execution data describing the execution of
events processed via an encapsulated library of services
within the logging framework. Such processing may be con-
ducted in conjunction with one or more work thread proces-
sors having memory and hardware processing units (e.g.,
CPU(s)) to implement the processing logic and perform the
requested operations.

Atblock 640, processing logic captures at least a portion of
the execution data emitted responsive to execution of the
plurality of events based on the one or more trace preferences
determined to be active for the request.

Atblock 645, processing logic flushes the captured portion
of'the execution data from a hardware memory of the system
to a persistent data store separate and distinct from the hard-
ware memory. Inone embodiment, the emitted execution data
is captured first via a high-data rate memory, such as a volatile
but high-speed RAM device, and then responsive to receiving
a flush command, the emitted execution data is flushed to a
persistent storage device for later retrieval.

At block 650, processing logic receives a request to simu-
late execution debug of the plurality of events processed via
the logging framework. At block 655, processing logic
accesses the portion of the execution data emitted responsive
to the execution of the plurality of events (e.g., from persistent
storage, such as on a hard disk drive or from within the
multi-tenant database implementation). At block 660, pro-
cessing logic simulates execution of the plurality of events via
a graphical user interface communicatively coupled with an
execution debug simulator of the system based on the portion
of execution data accessed without re-executing any of the
plurality of events. For example, data describing the execu-

20

40

45

55

14

tion of events, such as a transcript of execution events per-
formed, may be relied upon to replay or simulate the actual
execution on behalf of an execution debug simulator.

FIG. 7 illustrates a diagrammatic representation of a
machine 700 in the exemplary form of a computer system, in
accordance with one embodiment, within which a set of
instructions, for causing the machine 700 to perform any one
or more of the methodologies discussed herein, may be
executed. In alternative embodiments, the machine may be
connected (e.g., networked) to other machines inaLLocal Area
Network (LAN), an intranet, an extranet, or the Internet. The
machine may operate in the capacity of a server or a client
machine in a client-server network environment, or as a peer
machine in a peer-to-peer (or distributed) network environ-
ment or as a server or series of servers within an on-demand
service environment, including an on-demand environment
providing multi-tenant database storage services. Certain
embodiments of the machine may be in the form of a personal
computer (PC), a tablet PC, a set-top box (STB), a Personal
Digital Assistant (PDA), a cellular telephone, a web appli-
ance, a server, a network router, switch or bridge, computing
system, or any machine capable of executing a set of instruc-
tions (sequential or otherwise) that specify actions to be taken
by that machine. Further, while only a single machine is
illustrated, the term “machine” shall also be taken to include
any collection of machines (e.g., computers) that individually
or jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein.

The exemplary computer system 700 includes a processor
702, a main memory 704 (e.g., read-only memory (ROM),
flash memory, dynamic random access memory (DRAM)
such as synchronous DRAM (SDRAM) or Rambus DRAM
(RDRAM), etc., static memory such as flash memory, static
random access memory (SRAM), volatile but high-data rate
RAM, etc.), and a secondary memory 718 (e.g., a persistent
storage device including hard disk drives and persistent
multi-tenant database implementations), which communi-
cate with each other via a bus 730. Main memory 704 includes
emitted execution data 724 (e.g., data emitted by a logging
framework) and one or more trace preferences 723 which
operate in conjunction with processing logic 726 and proces-
sor 702 to perform the methodologies discussed herein.

Processor 702 represents one or more general-purpose pro-
cessing devices such as a microprocessor, central processing
unit, or the like. More particularly, the processor 702 may be
a complex instruction set computing (CISC) microprocessor,
reduced instruction set computing (RISC) microprocessor,
very long instruction word (VLIW) microprocessor, proces-
sor implementing other instruction sets, or processors imple-
menting a combination of instruction sets. Processor 702 may
also be one or more special-purpose processing devices such
as an application specific integrated circuit (ASIC), a field
programmable gate array (FPGA), a digital signal processor
(DSP), network processor, or the like. Processor 702 is con-
figured to execute the processing logic 726 for performing the
operations and functionality which is discussed herein.

The computer system 700 may further include a network
interface card 708. The computer system 700 also may
include a user interface 710 (such as a video display unit, a
liquid crystal display (LCD), or a cathode ray tube (CRT)), an
alphanumeric input device 712 (e.g., a keyboard), a cursor
control device 714 (e.g., a mouse), and a signal generation
device 716 (e.g., an integrated speaker). The computer system
700 may further include peripheral device 736 (e.g., wireless
or wired communication devices, memory devices, storage
devices, audio processing devices, video processing devices,

US 9,189,367 B2

15

etc. The computer system 700 may further include a Hard-
ware based API logging framework 734 capable of executing
incoming requests for services and emitting execution data
responsive to the fulfillment of such incoming requests.

The secondary memory 718 may include a non-transitory
machine-readable storage medium (or more specifically a
machine-accessible storage medium) 731 on which is stored
one or more sets of instructions (e.g., software 722) embody-
ing any one or more of the methodologies or functions
described herein. The software 722 may also reside, com-
pletely or at least partially, within the main memory 704
and/or within the processor 702 during execution thereof by
the computer system 700, the main memory 704 and the
processor 702 also constituting machine-readable storage
media. The software 722 may further be transmitted or
received over a network 720 via the network interface card
708.

While the invention has been described by way of example
and in terms of the specific embodiments, it is to be under-
stood that the invention is not limited to the disclosed embodi-
ments. To the contrary, it is intended to cover various modi-
fications and similar arrangements as would be apparent to
those skilled in the art. Therefore, the scope of the appended
claims should be accorded the broadest interpretation so as to
encompass all such modifications and similar arrangements.
Itis to be understood that the above description is intended to
be illustrative, and not restrictive. Many other embodiments
will be apparent to those of skill in the art upon reading and
understanding the above description. The scope of the inven-
tion is therefore determined in reference to the appended
claims, along with the full scope of equivalents to which such
claims are entitled.

What is claimed is:

1. A method in a host organization having at least a pro-
cessor and a memory therein, wherein the method comprises:

receiving a request ata web-server of the host organization,

the request specifying one or more services to access a
multi-tenant database of the host organization, the multi-
tenant database operating within a production environ-
ment;

determining, via a trace flag analyzer, one or more trace

preferences for the request, wherein the trace flag ana-
lyzer determines the one or more trace preferences are
active for the request based on a client organization
identifier (OrglD) associated with the request;

sending the request to a logging framework communica-

tively interfaced to the multi-tenant database, wherein
the logging framework comprises an encapsulated
library of services to access the multi-tenant database,
the encapsulated library of services including the one or
more services;

servicing the request via the logging framework while the

multi-tenant database concurrently services requests
each from a different respective one of a plurality of
distinct customer organizations, wherein servicing of
the request results in each individual service of the one
or more services emitting respective execution data
describing execution of each event by the individual
service to service the request, wherein the servicing of
the request generates the execution data without causing
execution of the encapsulated library of services to be
stopped or halted for any of the plurality of distinct
customer organizations; and

tracing an execution of code by the one or more services to

service the request, including tracing according to the
OrgID associated with the request, the OrglD corre-
sponding to one of the plurality of distinct customer

10

15

20

25

30

35

40

50

55

60

65

16

organizations, wherein tracing the execution of code
includes a listener receiving the execution data emitted
by the one or more services and selectively sending only
a portion of the execution data to a persistent storage
based on the one or more trace preferences, wherein,
after servicing of the request is completed, an execution
debug simulation is performed with the portion of
execution data sent to the persistent storage.

2. The method of claim 1, wherein servicing the request via
the logging framework comprises servicing the request via
one or more work thread processors, wherein the one or more
work thread processors execute a plurality of events against
the multi-tenant database, based on the request, via the log-
ging framework.

3. The method of claim 1, further comprising:

receiving a request to simulate execution debug of a plu-

rality of events processed via the logging framework to
service the request.

4. The method of claim 3, further comprising:

simulating the execution of the plurality of events in

response to the request by:

accessing the portion of the execution data emitted by the

one or more services responsive to the execution of the
plurality of events; and

simulating execution of the plurality of events via a graphi-

cal user interface communicatively coupled with an
execution debug simulator of the system, wherein simu-
lating execution of the plurality of events comprises at
least presenting output corresponding to execution of
one or more of the plurality of events based on the
portion of execution data accessed without re-executing
any of the plurality of events.

5. The method of claim 1, wherein selectively sending only
the portion of the execution data to the persistent storage
comprises flushing the portion of the execution data from a
high-data-rate RAM to a non-volatile storage device, wherein
the non-volatile storage device is selected from the group
comprising:

persistent storage on a hard-disk drive within the host orga-

nization having space allocated to a customer organiza-
tion associated with the request;

persistent storage within the multi-tenant database in an

area allocated to a customer organization associated
with the request; and

persistent storage on a non-volatile storage device commu-

nicatively interfaced with an end-user client machine
having originated the request, wherein the end-user cli-
ent machine is remote and distinct from the system ofthe
host organization.

6. The method of claim 1:

wherein the OrgID corresponds to one of the plurality of

distinct customer organizations remote from the host
organization without regard to the end-user originating
the request.

7. The method of claim 1, further comprising:

performing a look-up operation via the web-server of the

one or more trace flags for the request received based on
the OrgID associated with the request;
encoding, via the web-server, the one or more trace flags
into the request based on the lookup operation; and

forwarding the request having the one or more trace flags
encoded therein to one or more work thread processors
to process the request in coordination with the logging
framework.

8. A non-transitory computer readable storage medium
having instructions stored thereon that, when executed by a

US 9,189,367 B2

17

processor of a host organization, the instructions cause the
host organization to perform operations comprising:
receiving a request ata web-server of the host organization,
the request specifying one or more services to access a
multi-tenant database of the host organization, the multi-
tenant database operating within a production environ-
ment;

determining, via a trace flag analyzer, one or more trace

preferences for the request, wherein the trace flag ana-
lyzer determines the one or more trace preferences are
active for the request based on a client organization
identifier (OrglD) associated with the request;

sending the request to a logging framework communica-

tively interfaced to the multi-tenant database, wherein
the logging framework comprises an encapsulated
library of services to access the multi-tenant database,
the encapsulated library of services including the one or
more services;

servicing the request via the logging framework while the

multi-tenant database concurrently services requests
each from a different respective one of a plurality of
distinct customer organizations, wherein servicing of
the request results in each individual service of the one
or more services emitting respective execution data
describing execution of each event by the individual
service to service the request, wherein the servicing of
the request generates the execution data without causing
execution of the encapsulated library of services to be
stopped or halted for any of the plurality of distinct
customer organizations; and

tracing an execution of code by the one or more services to

service the request, including tracing according to the
OrgID associated with the request, the OrglD corre-
sponding to one of the plurality of distinct customer
organizations, wherein tracing the execution of code
includes a listener receiving the execution data emitted
by the one or more services and selectively sending only
a portion of the execution data to a persistent storage
based on the one or more trace preferences, wherein,
after servicing of the request is completed, an execution
debug simulation is performed with the portion of
execution data sent to the persistent storage.

9. The non-transitory computer readable storage medium
of claim 8, wherein the method further comprises receiving a
request to simulate execution debug of a plurality of events
processed via the logging framework to service the request.

10. The non-transitory computer readable storage medium
of claim 9 wherein simulating the execution of the plurality in
response to the request comprises:

accessing the portion of the execution data emitted by the

one or more services responsive to the execution of the
plurality of events; and

simulating execution of the plurality of events via a graphi-

cal user interface communicatively coupled with an
execution debug simulator of the system, wherein simu-
lating execution of the plurality of events comprises at
least presenting output corresponding to execution of
one or more of the plurality of events based on the
portion of execution data accessed without re-executing
any of the plurality of events.

11. The non-transitory computer readable storage medium
of'claim 8, wherein selectively sending only the portion of the
execution data to the persistent storage comprises flushing the
captured portion of the execution data from a high-data-rate
Random Access Memory (RAM) of the system to a separate
and distinct non-volatile storage device, wherein the non-
volatile storage device is selected from the group comprising:

10

30

35

40

45

50

55

60

65

18

persistent storage on a hard-disk drive within the host orga-
nization having space allocated to a customer organiza-
tion associated with the request;

persistent storage within the multi-tenant database in an
area allocated to a customer organization associated
with the request; and

persistent storage on a non-volatile storage device commu-
nicatively interfaced with an end-user client machine
having originated the request, wherein the end-user cli-
ent machine is remote and distinct from the system ofthe
host organization.

12. The method of claim 1, further comprising tracking
each executed line of code associated with servicing the
request according to a customer identifier (UserID) in addi-
tion to OrglID, the UserID identifying which authorized user
of'the multi-tenant database the request is being executed for,
on behalf of, or at the request of said User]D which corre-
sponds to an end-user originating the request from within one
of the plurality of distinct customer organizations remote
from the host organization.

13. The method of claim 1, wherein the execution data
describes one or more of:

a line of code that was executed servicing the request, a
result code/error code of the executed line of code, con-
tents of any variable accessed, instantiated, written to, or
read from by the executed line of code, a customer
identifier (UserID) associated with the executed line of
code, the OrgID associated with the executed line of
code, and process identifiers/thread identifiers associ-
ated with the line of code executed.

14. A system comprising:

a processor;

a memory;

a web-server to receive a request specifying one or more
services to access a multi-tenant database operating
within a production environment and servicing a plural-
ity of distinct customer organizations’ service requests
concurrently;

a trace flag analyzer to determine one or more trace pref-
erences for the request, wherein the trace flag analyzer
determines the one or more trace preferences are active
for the request based on a client organization identifier
(OrglD) associated with the request;

a logging framework comprising an encapsulated library
of services communicatively interfaced to the multi-
tenant database to process the request, the encapsulated
library of services including the one or more services to
service the request while the multi-tenant database con-
currently services requests each from a different respec-
tive one of a plurality of distinct customer organizations,
wherein the one or more services to service the request
results in each individual service of the one or more
services emitting respective execution data describing
execution of each event by the individual service to
service the request, wherein the servicing of the request
generates the execution data without causing execution
of the encapsulated library of services to be stopped or
halted for any of the plurality of distinct customer orga-
nizations; and

a listener interfaced to the logging framework to trace an
execution of code by the one or more services to service
the request, including the listener to trace according to
the OrgID associated with the request, the OrglD corre-
sponding to one of the plurality of distinct customer
organizations, wherein the listener to trace the execution
of code includes the listener to receive the execution data
emitted by the one or more services and to selectively

US 9,189,367 B2

19

send only a portion of the execution data to a persistent
storage based on the one or more trace preferences,
wherein, after the request is serviced, an execution
debug simulation is performed with the portion of
execution data sent to the persistent storage.

15. The system of claim 14, further comprising:

an execution debug simulator to:

access the portion of the execution data emitted by the one
or more services responsive to the execution of a plural-
ity of events to service the request; and

simulate execution of the plurality of events via a graphical
user interface communicatively interfaced with the
execution debug simulator, wherein simulating execu-
tion of the plurality of events comprises at least present-
ing output corresponding to execution of one or more of
the plurality of events based on the portion of execution
data accessed and without re-executing any of the plu-
rality of events.

16. The system of claim 14:

wherein the listener to selectively send only the portion of
the execution data to the persistent storage comprises the
listener to flush the portion of the execution data from a
a high-data-rate Random Access Memory (RAM) to a
non-volatile storage device and wherein the high-data-
rate RAM caches the portion of the execution data emit-
ted by the one or more services responsive to execution
ofaplurality of events until a flush command is received;
and

wherein the non-volatile storage device is selected from the
group comprising:

persistent storage on a hard-disk drive within the host orga-
nization having space allocated to a customer organiza-
tion associated with the request,

persistent storage within the multi-tenant database imple-
mentation in an area allocated to a customer organiza-
tion associated with the request, and

persistent storage on a non-volatile storage device commu-
nicatively interfaced with an end-user client machine

10

20

30

20

having originated the request, wherein the end-user cli-
ent machine is remote and distinct from the system ofthe
host organization.
17. The system of claim 14, wherein the trace flag analyzer
to determine one or more trace preferences comprises the
trace flag analyzer to determine one or more trace preferences
are active based on a user identifier (UserID) or the OrgID
associated with the request.
18. The system of claim 17, wherein the trace flag analyzer
to determine the one or more trace preferences are active
based on a UserID or the OrglD associated with the request
comprises the trace flag analyzer to perform one of the fol-
lowing operations:
compare the UserID embodied within the request against a
plurality of trace flags cached in a memory of the system;

read the one or more trace preferences for the UserID
embodied within the request from the multi-tenant data-
base based on the UserID;

read the one or more trace preferences from the request

received; or

correspond the UserID to the OrglD associated with the

request and implement the one or more trace preferences
specified for the OrgID.

19. The system of claim 14, wherein the web server pro-
vides a web-based interface to a remotely located end-user
client machine originating the request, wherein the request
comprises a request for services from the multi-tenant data-
base implementation operating within the host organization.

20. The system of claim 19, further comprising:

a webserver, wherein the web server:

receives a request for services from the remotely located
end-user client machine;

encodes one or more trace flags into the request based on
the one or more trace preferences corresponding to a
user identifier (UserID) or the OrglD associated with
the request; and

forwards the request having the one or more trace flags
encoded therein to the one or more work thread pro-
cessors to process the request.

#* #* #* #* #*

